P20

200

DETERMINATION OF THE BOND DISSOCIATION ENERGY $D(t\text{-}C_4F_9\text{-}I)$

W. J. Griffiths

Chemistry Department, University of the West Indies, Mona, Kingston 7 (Jamaica)

and E. Whittle

Chemistry Department, University College, Cardiff, CF1 1XL (U.K.)

		The reactions		
Br	+	$R_a I \longrightarrow$	$IBr + R_a$	(1)
Br	+	R _b I →	IBr + R _b	(2)

where $R_a = t - C_4 F_9 I$, $R_b = i - C_3 F_7 I$ or $n - C_3 F_7 I$, have been studied competitively in the gas phase over the temperature range 18-153°C. For reaction (1) we obtain log A/cm³ mole⁻¹ S⁻¹ = 13.5, E/kJ mole⁻¹ = 24.8. Using the above activation energy D(t-C_4 F_9 - I) was calculated to be 208.7 kJ mol⁻¹.